Skip to content

Python 中的数据结构与算法

基础数据结构:数组,堆,栈,队列,链表

数组

Python 中的基础数组,满足 O(1) 的随机查找,和 O(n) 的随机插入。

严格来讲,是一种特殊的二叉树,满足 O(nlogn) 的随机插入和删除,以及 O(1) 时间复杂度拿到最大值或者最小值。堆可以用来实现优先队列,还可以在项目中实现多任务调度,有着非常广泛的应用。

栈,是一种先进后出的数据结构,入栈和出栈操作都是 O(1) 时间复杂度。

队列

队列和栈对应,不过功能刚好相反,它是一种先进先出的数据结构,一如其名,先排队者先服务。入队和出队也是 O(1) 的时间复杂度。栈和队列都能用数组来实现,但是对空间的规划需要注意,特别是用数组实现的队列,我们通常用的是循环队列。

链表

链表则是另一种线性表,和数组的不同是,它不支持随机访问,你不能通过下标来获取链表的元素。链表的元素通过指针相连,单链表中元素可以指向后者,双链表则是让相邻的元素互相连接。

提示

基础数据结构,在 Python 中都有很好的库和包支持,从使用上来说都非常方便

进阶数据结构:无向图,有向图,树,DAG 图,字典树,哈希表

无向图

无向图,是由顶点和边组成的数据结构,一条边连接两个顶点(如果两个顶点是一个,这条边称为自环)。一如其名,“无向”,所以它的边没有指向性。

有向图

有向图,和无向图一样都是“图”这种数据结构,不同的是有向图的边有指向性,方向为一个顶点指向另一个顶点。

树这种数据结构,则可以分为有根树和无根树。前者中,最常见的就是我们的二叉树,从顶点开始一级级向下,每个父结点最多有两个子结点。至于无根树,则是一种特殊的无向图,无环连通的无向图被称为无根树,它有很多特别的性质和优点,在离散数学中应用广泛。

DAG 图

DAG 图,也叫做有向无环图,是一种特殊应用的数据结构,在图的动态规划问题中出现甚多。遍历 DAG 图的方式,也就是我们常说的拓扑排序,是一种图算法。

字典树

字典树,又被称为 Trie 树,是一种边为字符的有向图,它在字符串处理中有着非常强大的应用。广为人知的 AC 自动机,就是用 Trie 树来解决多模式字符串匹配问题。Trie 树在工业界也常被拿来做搜索提示,例如你在百度中搜索 “一览众”,就会自动跳出 “一览众山小”。

哈希表

哈希表,这一定是程序员应用最广、自觉最简单的一个数据结构,比如 Python 的 dict() 就可以拿来即用,简单而自然。不过,哈希表其实有着非常深刻的内涵,冲突算法、哈希算法、扩容算法,都很值得我们去深究一下。

算法:排序

算法:二分搜索

算法:深度优先搜索(DFS)和广度优先搜索(BFS)

算法:贪心和动态规划

拓展阅读

提示

掌握了数据结构和算法,才能在数学基础上对 Python 的理解更进一步。同时,在未来的项目设计中,这些思维亦会在无形之中,帮你设计出更高质量的系统和架构,可以说是终生受益的学习投资了。